
A Discrete Vector Potential MO 
for Unsteady Incompressible Viscou 

D. MANSUTTI* 

1.4C, CNR, Viaie de1 Policlinico 137, 0016i Roma, Iia!], 

AND 

G. GRAZIANI AND R. PIVA 

Diparrirnenro di Mcccanica e Aeronauticu, C:tticersitd di Romn ‘ala Sapienx,“ 
Via Eudossiann, 18, 00184 Roma, Itab 

Received March 6, 1989; revised December 27, 1589 

A recent approach to generate a zero divergence veiociiy field by operating directiy on the 
discretized Navier-Stokes equations is used to obtain the decoupling of the pressure from the 
velocity field. By foilowing the methodology suggested by Amii, Hail, and Poraching the 
feasibility of treating three dimensional flows and multiply connected domains is anaiyzed. 
The present model keeps the main features of the classical vector potential method in that it 
generates a divergence-free velocity field through an algebraic manipulation of the discrete 
equations. At the same time the boundary conditions are still imposed on the discrete values 
of the primitive variables. The accnracv of the method is tested against the exact solution for 
a recirculating unsteady flow both in simply and doubly connected domains. Several applica- 
:ions to flow fields in three-dimensional enclosures or in multiply connected domains are 
presented and discussed in terms of accuracy and etliciency of the method. c 1991 .Asademiz 

Press. Inc. 

1. INTR~DUCTXON 

One of the major difficulties when solving numerically the unsteady Navier- 
Stokes equations for incompressible flows is the rigorous satisfaction of the 
discretized mass conservation, at each time level, in order to simulate correctly the 
transient phenomena. The numerical models in primitive variables, which are 
usually preferred because of the straightforward enforcement of the wall bounda.rj 
conditions (including the case of multiconnected domains of particular inrerest bn 
the present paper) have diffkulties in the determination of the discrete pressure 
consistently with the divergence free velocity field. This requires the so3ution 
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of a Poisson equation, which leads to a substantial increase of the computing 
effort, while the introduction of any numerical compressibility (that allows a very 
efficient algorithm for steady state flows) produces a distorting effect on transient 
phenomena. 

The classical approach to overcome the problem, assumes as a variable the 
stream function (I,+) or the vector potential (v) which automatically generate, for 
two- and three-dimensional fields, respectively, a divergence free velocity field. On 
the other hand, the boundary conditions are not as easily or accurately applied, as 
in the case of primitive variables, especially in multiply connected domains. 

Considering two-dimensional flow fields, a first model assumes the stream func- 
tion as the unique variable and a fourth-order equation, obtained by taking the curl 
of the momentum conservation equation, has to be solved. Another and more com- 
mon model splits this equation into two second-order equations by introducing the 
vorticity as a second variable. In both cases the boundary conditions are given on 
the two velocity components, that is, on $ and on ih,b/dn. From these we may 
obtain an integral boundary condition on the vorticity [l], to be used for the split 
system, or an approximated local condition to be evaluated by means of previously 
obtained $ values, when iterative schemes are used [2]. In both cases the explicit 
application of the vorticity boundary condition introduces an inaccuracy in the 
solution of transient phenomena. Some further difficulties arise in the application of 
boundary conditions in multiply connected domains where the value of Ic/ is not 
known for all the wall boundaries (e.g., at the internal bodies) and cumbersome 
iterative procedures are usually adopted [3]. Moreover, these formulations do not 
allow for boundary conditions on pressure which may be relevant for free surface 
flows. 

Three-dimensional flow fields can be represented by following completely 
analogous schemes. In particular, taking the curl of the Navier-Stokes equations 
and defining the variables in terms of the scalar and the vector potential yields a 
set of fourth-order equations (one for each component of the vector potential) plus 
a Laplace equation for the scalar potential. Introducing the vorticity vector as a 
variable one obtains a system of second-order equations. These models have the 
same general features of the corresponding ones for two-dimensional flows. Actually 
the boundary conditions on the vector potential are not as simply formulated as 
those on the stream function. For multiply connected flows, besides the difficulties 
illustrated above for the stream function, the proper assignment of the boundary 
conditions in the computational models is still a subject under investigation [4, 51. 

A different and more recent approach generates a divergence-free velocity field 
by operating directly on the discretized Navier-Stokes equations to obtain a 
decoupling of the pressure from the velocity field. A first suggestion in this direction 
has been given by Amit, Hall, and Porshing [6] through an interesting application 
of the network theory to represent the null space base vectors of the discrete 
divergence operator. The same result has been reached later by Stephens, Bell, 
Solomon, and Hacker-man [7] through a quite different idea based on the applica- 
tion of the Galerkin technique directly to the discretized finite difference equations 
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with discrete solenoidal base functions. Both methodologi.es, which are strongly 
related in particular for certain difference schemes? lead to a reduced system of 
equations to be solved implicitly. 

Consistently with the idea of operating directly on the discrete Navier-Stokes 
equations, we essentially followed the methodology suggested in [4] to analyze the 
feasibility of treating 3D flows in simply and multiply connected domains. En 
particular, we stress here the physical interpretation of the method in terms of a 
discrete vector potential generated through the application of discrete operators. 
The present model keeps the main feature of the classical vector potentiai method 
obtained by operating at the continuum level on the differential equations. In fact: 
it exactly satisfies the mass conservation, while at the same time decoupling the 
pressure from the velocity field. Moreover, the boundary conditions are now 
expressed directly in terms of the primitive variables (the Navier-Stokes equations 
are discretized in their original form) without presenting any of the problems 
previously discussed for simply and multiply connected fields. As a counterpar: of 
these positive features, which are very attractive for the accurate solution of 
unsteady Rows, the method requires a more substantial computer effort related to 
the larger band of the matrix to be inverted in comparison to the standard implicit 
schemes in primitive variables. 

In the present paper we intend to apply this numerical method to several 
fields which may enhance its positive features and capabilities. A complete 
description of the model, together with the physical interpretation of the discrete 
operators in simply and multiply connected domains, is presented in Sections 2 and 
4, respectively. The applications of the method and the computationai test cases are 
illustrated and discussed in Sections 3 and 5 by comparing the present solution with 
those obtained by other methods. Some concluding remarks about the overall 
efficiency of the method and its possible extension and improvement are given :n 
Section 4. 

2. DESCRIPTION OF THE COMPUTATIONAL MODEL 

2.a. Discretized Form of the Equations and So!ution Procedure 

Let us consider the incompressible flow in a bounded three-dimensional 
D, with boundary dD, and its mathematical model given by the Navier-Stokes 
equations. The presentation is here confined to Cartesian coordinates to simpiify 
the description of the computational procedure, and it follows that given in [4? 97. 

The momentum and mass conservation are described by: 
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with boundary and initial conditions, 

Ui(XI, x2, x3, t) = iii for xi, x2, x3 E dD, t > 0 (3) 

ui(xI, -x29 x3, o)=“Oi for xi, x2, x3 ED, (4) 

where uoi is a divergence-free initial velocity field and the other symbols have their 
usual meaning. 

The finite difference approximation of the governing equations is based on a 
regular grid R consisting of cubic cells, whose edge is 12. The classical MAC 
staggered definition of the variables (i.e., the pressure at the center of the cell and 
the velocity components at the center of the normal cell sides) has been adopted. 
The discretization has been performed by an implicit forward-time centered-space 
scheme, where At is the time step. The convective term has been linearized by 
evaluating the transport components uj at the previous time level. The following 
system of algebraic equations is obtained 

+p”‘-u”-l)+B,p l~m =ATpp” +f’” + O(At, A-x2) (5) 

Au’“’ = 0, (6) 

where m indicates the time level, u and p are vectors containing all the discrete 
velocity components and the discrete pressures, respectively, A and AT are 
rectangular matrices resulting from the finite differences discretization of the 
divergence and the gradient operator, respectively, B,- i is a square matrix 
resulting from the discretization of the convective and viscous terms, andf” is the 
vector of the mass force components and the boundary values. If N is the number 
of the cells and L is the number of the unknown velocity components, B,,- 1 is a 
L x L matrix and A is a N x L matrix. 

At the discrete level, the local continuity implies the global continuity condition; 
that is, the mass conservation in one of the cells follows from the mass conservation 
in the remaining part of the domain, provided the boundary conditions are assigned 
on the velocity. Consistently with this fact, the matrix A has rank (N - 1). Hence, 
as follows from classical results of linear algebra, its null space has dimension 
(L - (N- I)) and it is possible to find (L-N + 1) linearly independent vectors of 
RL which are a base and form a matrix C with dimension L x (L-N + 1) such that 

AC=O. (7) 

Equation (6) implies that urn belongs to the null space of A; hence, for the 
solution of Eqs. (5) and (6), there exists a unique vector ym E RLpN+l such that 

Urn = cy. (8) 

Let us mention here that the velocity z.P given by (8) exactly satisfies the discrete 
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mass conservation equation whatever the value of the vector y” solving the system 
(IO). In the following we again will focus our attention on this point 

We write Eq. (5) as 

Q,~1um=&ATpm+6”, (3) 

where 

Multiplying Eq. (9) by C’ and combining with Eqs. (7) and (S), we obtam 

C’Q, _ l C?;‘” = C=b”. ( 1 G \ 

The original system, whose order is 4N for a three-dimensional domain, has been 
reduced to the system (10) of (L - N+ 1) equations in (L - NS 1) unknowns. 
Because L 2 3N, the dimension of the system (10) is about 2N. The reduced order 
of the algebraic system to be solved is due both to the elimination of the pressure 
as an unknown quantity to be computed and to the introduction of the new 
variable ?“‘~ 

It is worth noticing that the above reduction procedure may be applied also to 
the case of physical problems requiring pressure boundary conditions. Actually, the 
prescribed pressure boundary values are accounted for, as they are included in the 
vector b”. In fact a few moditications to the model are needed for the treatment oi 
this case. An extra velocity unknown has to be computed at each boundary celi 
where the pressure is assigned. Let L, be the number of the added velocity 
unknowns. Now the matrix A has full rank N instead of (N- I) as it was in the 
case of velocity boundary conditions. Then A is a N x (L + L,) matrix and the 
dimension of its null space is (L + L, - N). Hence, (t, - I) linearly independent 
vectors have to be selected in addition to the (E-N + I.) vectors previous!.y 
considered. 

Let us go back now to the problem of finding the matrix C of the base vectors 
of the null space of .4. To this purpose we focus our attention on mass conservation 
in its discretized form (6). For a cubic cell of R, it may be expressed as the scalar 
product between the vector u”’ and a vector having all zero components except the 
ones involving the velocity components required for that cell. Consistently with the 
assumed difference scheme and the Cartesian coordinate system these components 
assume the numerical values & 1. By using the results of the network theory. as 
suggested by Amit, Hall, and Porsching [6], the resulting matrix A may be inter- 
preted as a node-arc incidence matrix of the network R’ whose nodes are the points 
where the discrete pressure is localized and whose oriented arcs are parallel to the 
Cartesian axes and one-to-one related to. the discrete unknown velocity ccm- 
ponents. In Fig. I the networks R and R’ are presented, for the sake of s~rnp~~c~?y~ 
in a two-dimensional domain with impermeable boundary. 

A base of the null space of the operator R is then efficiently determine 
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selecting (L -N+ 1) linearly independent elementary cycles of the network R’. It 
should be remembered that an elementary cycle is a minimum node-arc closed path 
passing only once through the nodes [lo]. In the sketch reported in Fig. 1, a set 
of (L -N + 1) linearly independent elementary cycles is obtained by taking the 
counterclockwise oriented peripheral paths around each cell of R’. A base vector is 
related to each of these elementary cycles. We obtain its components by walking 
around the cycle in the counterclockwise direction and by assigning a value f 1 to 
the components related to the four arcs included in the cycle and a zero value to 
the others. The sign ( + ) stays for the same orientation of the arc and the walk. The 
set of the (L - N + 1) vectors, obtained by this procedure, provides the columns of 
the matrix C. This is the foundamental matrix of the network R’ and it represents 
a discrete curl operator, as illustrated in the following subsection. We will see also 
that the vector y”, defined by Eq. (8), may be interpreted as a discrete vector 
potential. 

2.b. Physical Interpretation of the Discrete Operators 

Let us consider, for the sake of simplicity, the three-dimensional flow in a cubic 
simply connected domain D of side H with homogeneous Dirichlet boundary 

FIG. 1. Sketch of the discrete networks R and R' in a two-dimensional domain. 
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conditions on the normal velocity component, that is. without inflow or olmtflo‘%v at 
the walls. 

Consistently with the two-dimensional example given in Section 2.a, in order to 
build a base of the null space of A, we select the elementary cycles as the peripherai 
paths around the cell sides of the network R’. In particular, we obtain a set of 
linearly independent vectors by considering ail the cell sides of I?’ parallel to the 
Cartesian planes C-Y;, x3] and [s?, x3] plus the ones belonging to the CartesislE 
plane [s,, x1] for .y3 = h/2. The elementary cycles related to these cell sides 
give (L - N + I) linearly independent vectors which constitute t 
matrix C. 

We may easily verify that the matrix C has the structure of a discrete (centered 
finite difference) curl operating over a vector field w with components ($J~ ., 3 ?, q!1~1 
defined at the center of the normal cell sides of the network R’. In fast we show that 
the expression (8) gives the velocity field in terms of a discrete vector potentiai, Let 
us consider a component of the velocity P(i), giving, for instance, the third compo- 
nent 21j, in an internal point of the domain. The ith row of the matrix C has zero 
entries everywhere but in correspondence with the cycles related to the four ceil 
sides (v, I, 4,6) of R’ (see Fig. 2) containing the arc along the considered velodry 
component u3~ In correspondence with the four sides the entries assume the value 
- 1 for the forward and the left sides and the value + 1 for the backward and the 
right sides within the Cartesian frame. 

Relating the components of the vector ym to the proper cell sides, we obtain 

u’“(i) = [y(r) - y”(l)] - [y(f) - )qb)]. 

At the boundary aD, in the case of zero normal velocity condition, one (two at 
the corners) of these cell sides (i.e., elementary cycles) is missing, and accordingly. 
the related y”’ value is not delined. 

Introducing a discrete vector field w with the $l component locally given by 

at the center of the backward cell side [-x2, s3] of R’ 
at the center of the forward cell side [.Y~? ,u3] of R’ 

and the ti2 component locally given by 

at the center of the left cell side [x,, .u;] of R’ 
at the center of the right cell side [.x1, -?c3] of R’. 

with the boundary values 

$I=0 for x,=0 and xz=N 

$2=0 for x,=0 and .Y~-H; 
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FIG. 2. Sketch of the discrete components of yrn and of the cell sides involved in the evaluation of #“I. 

we may interpret the component ug as the finite difference approximation of 

Following the same procedure we can also express the other two velocity 
components ui and u2 in terms of the vector field \y, 

w3 ati, 
u1=ax,-ax,’ 

a*, a*, 
4=ilx,-ds,. 

In the last two expressions we have to recall that the elementary cycles on the 
planes [xr, x2] are included only for ?c3 = h/2. Hence the related values of the 
component I)~ defined as 

at the center of the backward cell side [xi, x2] of R’ 
at the center of the forward cell side [x,, x2] of R’ 
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are equal to zero everywhere but for x3 = h/2. Besides, the network R’ has no cells 
intersecting x3 = 0 and x3 = H. Accordingly, the boundary values are 

$1, $2=0 for x,=0 and x,=M 

f/13=Q for x,=0 and x,=H; x2=0 and :rT=M 

This proves that y acts as a discrete vector potential, whose boundary values 
follow directly from the numerical procedure. The unknown values y”, which define 
the components of \v, are obtained by solving Eq. (lo), that is: the discrete 
Navier-Stokes equation premultiplied by the matrix CT. Following a procedure 
analogous to the one just used for the matrix C, it can be shown that the matrix 
C’ acts as a discrete (centered finite difference) curl operating over a vector whose 
components are localized, as it happens for the velocity components, at the center 
of the normal cell sides of the network R. In fact, the ith row of the matrix C’ has 
zero components everywhere but in correspondence with the four arcs formin 
elementary cycle given by this row, where the components assume the values -t- 1 
depending on the cycle direction and the orientation of the arc. It follows that 
product (10) of CT times the discretized momentum equation represents the discreke 

rl of the equation. Its components are localized, like the components of the vector 
, at the center of the cell sides of R’. 
In conclusion, Eq. (10) is the discretized counterpart of the fourth-order vector 

potential equation, which is obtained at the continuum level by combining the 
vorticity transport equation, with the definition of velocity in terms of the vector 
potential. Exactly the same procedure was followed in developing the theory 
presented here but, by operating on the discretize equations rather than the 
continuous equations. 

Let us make a few comments about the definitions of the discrete vector poten- 
tial. First of all, at the continuum level, the vector potential is uniquely defined by 
adding the divergence-free condition to the proper boundary conditions. In the pre- 
sent discrete procedure, instead, the uniqueness is obtained by assigning zero value 
to the vector potential ti3 in an internal region of the domain (x3 #h/2). Obviously 
the set of (L - N+ 1) base vectors, i.e., the elementary cycles of the network, could 
have been selected by, for example, eliminating some of the cell sides parallel to the 
planes [x,, x3] or [-xl, x3] and finding, as a consequence, zero componems fo-r Z$ 1 
or $I, respectively. As a second comment let us stress the point that the values of 
the discrete vector potential at the boundary follow directly from the numerical 
procedure without any ambiguity. It is interesting to notice that, for simply 
connected domains, the two tangential components of \lp are zero as is required for 
the vector potential within the differential model [Ill. Let us recall once again, for 
the sake of clarity, that the physical effect of the boundary is felt through the 
forcing term computed directly from the boundary values of the primitive variables 
and not through the boundary values which have to be assigned to the vector 
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potential components as in the continuum approach. Further comments are due for 
the boundary conditions in the case of multiply connected domains; they will be 
analyzed at the end of the next section. 

3. NUMERICAL SOLUTIONS IN SIMPLY CONNECTED DOMAINS 

3.a. An Array of Decaying Vortices in Viscous Fluid 

A very interesting exact solution for the unsteady Navier-Stokes equations in 
two dimensions has been proposed by G. I. Taylor [ 141 for the physical case of a 
system of vortices arranged in a square pattern. It comes out a cellular flow, 
consisting of eddies which rotate alternately in opposite directions and whose 
intensity is reduced in time by the effect of viscosity. After recasting the Navier- 
Stokes equations in terms of the stream function variable, the closed-form solution 
is obtained by considering a function which satisfies the equation V’+ = k$ which 
implies the stream function proportional to the vorticity. As a consequence the 
nonlinear convective terms vanish, leading to the simple analytical solution 

* = sin xi sin x2eC2’lRe 

++ numer. sol. 

- anal. sol. 

-1.00 1 I I I I I I I I I I 

0 g 
2 

R 

X 

FIG. 3. Comparison of numerical results on a (40x40) grid with the analytic solution (11): 
+-velocity profiles at the horizontal centerline for t = 0.2 and Re = 20. 
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FIG. 4. (a) Time behavior of the analytical (u,) and computed (u,) vaIues of a velocity component 
(We = 1, dr = 0.001); (b) relative error as function of time. 
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in D = (0, 7~) x (0, rc). It follows that the velocity components and the pressure 
assume the expression 

u1 = sin xi cos x2eC2’lRe 

u2 = -cos xl sin x2eCZtiRe 

p = $(cos 2x, + cos 2x2)e-4”R”. 

(11) 

The above flow field is particularly appropriate as a test case for the evaluation 
of the numerical solution of unsteady Navier-Stokes equations. In fact, the effect of 
the linearization in the computational method is going to be emphasized within the 
numerical results by not canceling the discrete curl of the nonlinear terms as it 
occurs in the analytical approach. The diagram in Fig. 3 shows the numerical 
results for the u2 velocity profile at the horizontal centerline for Re = 20, At = 0.01 
after twenty time steps (t = 0.2). Exactly the same results have been obtained by 
assigning the boundary conditions in the first case on the normal and tangential 
velocity components and in the second case on the tangential velocity component 
and pressure. The numerical results are in very good agreement with the analytical 
solution. 

The time behavior of the analytical (u,) and computed (u,) values of the 
x,-velocity component at an internal point are plotted, for Re = 1, At = 0.001 in 
Fig. 4a which shows the expected exponential trend. The agreement of the two 
solutions is also shown in Fig. 4b where the relative error E, = (u, - u,)/u, is 
reported as a function of time. 

1 .oo- 

Y 

0.50- 

I I I I i 
-.40 -.20 .oo .20 .40 .60 .80 1 .oo 

u 

Re = 400 

FIG. 5. 2D square and 3D cubic driven cavity; profiles of the driven component velocity uI along 
the central vertical line (Re = 400). 
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The numerical scheme turns out to be stable in spite of the performed 
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A comparison between the profiles obtained for these two different boundary 
conditions, and the corresponding one for the two-dimensional case is also shown 
in Fig. 5. As expected, the two velocity profiles are identical when the slip condition 
is used, while a less pronounced profile is obtained with the no-slip condition 
because of the viscous dissipation at the end walls. The present velocity field agrees 
reasonably well (Fig. 6) with the one given by Goda in [ 161, even on the quite 
coarse mesh which has been adopted here (10 x 10 x 5 in the present calculations 
versus 20 x 20 x 15 in [ 161). A further investigation is in progress to analyze, by 
means of liner meshes, the structure of the flow field at larger Reynolds numbers, 
in particular the Taylor-Gortler vortices which have been detected in previous 
experimental [ 151 and numerical [ 171 studies. 

4. EXTENSION OF THE MODEL 
TO MULTIPLY CONNECTED FLOW FIELDS 

The numerical simulation of the flow in multiply connected domains requires a 
few more comments about the selection of the (L-N+ 1) base vectors and the 
physical interpretation of the discrete operators. A preliminary discussion of this 
case was given by the authors in [IS]. For the sake of simplicity let us first examine 
the two-dimensional case. Now we consider a rectangular domain D with a 
rectangular hole in it and again the case of homogeneous Dirichlet boundary 
conditions for the normal velocity component. Thus the boundary dD consists of 
the external portion do,, and the internal portion dD,, both of them lying along 
discrete coordinate lines. 

The cell sides of the network R’ are in the present case (L -N), that is one less 
than in the previous case of simply connected domains. The further elementary 
cycle of the network R’ is given by the closed path along the inner boundary aD, 
(at a distance h/2 from do,). The corresponding base vector is obtained by taking 
a vector with a component different from zero for each arc belonging to the cycle, 
with a value k 1 depending on the direction of the arcs and the direction of the 
cycle. This cycle, together with the other standard (L - Nj cycles, constitutes the 
fundamental matrix C which still represents a discrete curl operator. In particular, 
for two-dimensional flows it operates over the only nonzero component, namely the 
one normal to the plane of the flow, which is given by the stream function $, 
defined at the center of the cells of R’. 

In the present case the stream function is zero only at the external boundary aD,,. 
In fact, for each unknown velocity component, localized at a distance h/2 from 

dD, and parallel to it, the related row of the matrix C has two nonzero entries in 
correspondence with the two columns describing the internal cell of R’ and the path 
along aD,, respectively. Both of them contain the considered unknown velocity 
component. Therefore, the (L -N + 1)th component of the unknown vector y”‘, 
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defined for the cycle along dD 1, represents the constant value of the stream func:Bon 
at the inner boundary. 

As well as for simply connected domains, the matrix CT whose single row 
describes the cycle around a cell of R’, represent’s the discrete curl operator acting 
on a vector whose components are localized, as the velocity components, at the 
center of the cell sides of R. The (L - N + 1) th row describing the cycle aiong the 
inner boundary dD, of R’ gives rise to a discrete curvilinear integral operator 
performed along the boundary itself. Actually, by taking the last component of the 
product (see Eq. (10)). 

i.e., the component given by the (L-N + 1 )th row of CT combined with Eq. (71, 
we have the discrete representation of the integral condition (along a c 
around ?D ‘L ) 

or the equivalent 

P Vp . ds = 0. 

This integral condition, which is automatically satisfied in simply connected 
fields, has to be enforced in doubly connected domains to give a single-valued 
pressure function. The extension to multiply connected domains therefore provides 
a value of the stream function for each of the inner boundaries. 

The above integral condition is also automatically satisfied when primitive 
variables are preserved, while it becomes necessary to enforce ( 13) or (14) for any 
other choice of the variables which eliminates the pressure by taking the curl 
of the momentum equation. This concerns both streamfunction-vorticity 1121 and 
velocity-vorticity [13] methods, for which the numerical solution of the equations 
is generally accomplished through some iterative procedure. For instance, a predic- 
tor value of the stream function at the inner boundary is given by the previous step 
and a corrector value is obtained by solving the integral condition (13) [3 ]. The 
present computational model, by performing the curi of the equations at the 
discrete level to eliminate the pressure as an independent discrete variable, w-ouid 
certainly require the extra integral condition. This is, however, automatically 
included in the procedure through the selection of the elementary cycle around the 
inner boundary, which is required to complete the set of the base vectors of the null 
space of the matrix A. 

We briefly add a few comments about the extension to three-dimensional flows 
of the procedure just described for multiply connected domains in two dimensions. 
For the sake of simplicity we consider a three-dimensional domain 
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above two-dimensional configuration as a transversal section in each plane 
[*,I, x2]. It results in a parallelepipedal domain with an internal empty square 
column in the .xj direction. In this case a basis of the null space of A is obtained 
by considering, as has been done for the simply connected domains, the elementary 
cycles along the boundary of the cell sides of R’ which are parallel to the [x,, x3] 
and [x,, x3] Cartesian planes plus the ones parallel to the [x,, x2] plane at the 
level xj = H/2. The additional cycle, required to complete the set of the base vectors, 
is given by a closed path around the column lying on a [x1, x2] plane. The tangen- 
tial component ($j) of the vector potential (w) is zero on the boundary of the hole, 
everywhere but along the looping path where it assumes a constant value to be 
determined by the solution. 

5. NUMERICAL SOLUTIONS IN DOUBLY CONNECTED DOMAINS 

5.a. An Arra), of Unsteady Recirculating Flows about Square Objects 

Particular attention has been devoted to the aim of selecting a valid test case for 
unsteady viscous flows in doubly connected domains. A satisfactory result has been 
reached through the following considerations. 

The velocity and pressure field (11) describing an array of vortices, is also a 
solution of the unsteady Navier-Stokes equations in a doubly connected domain 
D’= D - [7c/3,2/3~] x [7r/3, 2/3x], where a square object of side 43 has been 
placed at the center of the original domain D = (0, Z) x (0, n), provided the 
appropriate boundary conditions consistent with the velocity field (11) are assigned 
at the inner boundary. 

It follows that a through flow occurs locally (with a global zero flow for each 
side) at this boundary and a few modifications of the solution algorithm are 
required to treat this case. 

With nonhomogeneous Dirichlet boundary conditions on the normal velocity, 
the system of equations representing the discrete mass conservation assumes the 
form 

Au” = s,,, (15) 

where s,, contains the boundary values of the normal velocity. Equation (15), as 
suggested in [6], is solved by splitting the solution urn into a solution z” of the 
associated homogeneous system and a particular solution y” of the complete 
system (15), that is, 

um=zm+ym. (16) 

Taking any vector y” which satisfies (15), the further equations defining zm are 
obtained by combining (16) and (9), 

Q,-lZrn= AtATp”+Fmm-, (17) 
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with 
F m _ I = 6’” - Q,, ~ 1 1.“‘. .,rg, 

The system of equations (17) may be solved by the standard algorithm: together 
with the discrete mass conservation which now is given by 

AZ” = 0. ,19) 

As suggested by network theory, we get a vector ynl with zero corn~o~e~t~ 
everywhere except along a spanning tree of the network associated with ihe 
problem. The components of y” are easily computed, one at the time, by satisfying 
the continuity equation at each node of the network. It follows a very simple flow 
field consisting of a local recirculating region which satisfies the normal veiocicy 
boundary conditions. The remaining part of the solution, z ‘z is given by the soiati.ora 
of the system (17), (19). It is worth noticing that the divergence-free velocity f;leid 
Y7’ satisfies the momentum conservation equation with the global velocity 2’” as 
transport velocity and a forcing term which also accounts for the boundary condi- 
tion on the normal velocity in the original problem. As boundary conditions on z”’ 
the tangential component is given by the analytical solution ( 13 ) while the r,ormal 
component is assumed to be zero. The resulting flow field iliustrated in Fig. 7 is 

r 

FIG 7. Numerical solution in a 2D doubly connected domain; streamiines for the z, solution of ( 17) 
with boundary conditions specified by ( 11). 
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very similar to the one given by solution (ll), except near the inner boundary 
where four narrow recirculating regions, one for each side of the square object, 
appear in order to satisfy the boundary conditions. Combining the two flow fields 
given by ym and P, we obtain the solution zP, whose streamline pattern is plotted 
in Fig. 8. We may formally compare the numerical velocity profile u”*, with the 
analytical solution (11) which is still valid in the domain D’. A perfect agreement 
between the two solutions has been found. 

As a final comment about the adopted solution, it seems very appealing for 
testing computational models in doubly connected domains, where no specific exact 
solutions or benchmark numerical solutions are available. It would be even better 
to assume the solution zm as reference solution, because of the homogeneous 
boundary condition on the normal velocity. In fact, in this case the value of the 
streamfunction at the inner boundary could be a global and unique parameter to 
test the overall solution. The value of $,a, in the present calculation is 0.204. 

5.b. Lid Driven or Thermally Induced Flow in a Square Anrmlus 

The present model has been applied to two simple cases of recirculating flow, 
generated by forced and natural convection, respectively, inside the square 
enclosure with double connection described in Section 5a. 

FIG. 8. Numerical solution in a 2D doubly connected domain; streamlines for the complete solution 
U, with boundary conditions specified by (11). 



DISCRETE VECTOR POTENTIAL MODEL 
~ ,*p 
1;;’ 

En the first case the flow is induced by the motion of the top horizontal wall as 
in the classical driven cavity problem. The numerical results for several values of the 
Reynolds number, from 1 to 3200, are shown in Fig. 9. With respect to the classical 
driven cavity flow field, the presence of the inner body produces a secondary rccir- 
culating region in the part of the annulus with the sliding wall. At increasing values 
of the Reynolds number, this recirculation is convected away from the originai 
symmetrical position (see Re = 400) and it remains confined in a region close to the 
inner boundary for the larger Re values (e.g., Re = 1600 and Re = 3200). In these 

Grid 10 X IQ; $)min = h.52, A$ = .l 

Grid 39 x 39; 4min = -2.2, A$ = .4 

Grid 39 x 39; &in = -2.4, A$ = .3 

Grid 39 x 39; ~‘min = -2.1, A$ = .3 

FIG. 9. Lid driven cavity flow in a doubly connected domain; steady state streamlines fc: Re = 1 (ai, 
400 (b), 1600 (c), and 3200 (d). Boundary conditions: tangential velocity = I at the top horizontal 
boundary; zero velocity at the other internal and external boundaries. 
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cases the overall flow field is quite similar to the one in the driven cavity except for 
the fact that the central vortex core is occupied by the inner solid body. A more 
detailed streamline pattern is here required to detect the secondary recirculations 
because of the very low values of the velocity in those regions. In particular, a 
refinement of the streamlines for values close to zero ( -0.08 < ICI < 0.15) and close 
to timin( -2.15 < $ < -2.07) is shown in Fig. 10 for the case of Re = 3200. 

The only comparison available for this physical case is the one with the finite 
difference model presented by Stella and Guj [13]. The zc2 velocity profile in the 
mid-section of the enclosure, for Re = 1 (Fig. 11) is in exact agreement with the 
solution given in [13]. 

In the second case that we are going to examine, the recirculating flow is induced 
by the temperature difference between the inner and the outer boundary of the 
enclosure, with the exception of the left external wall which is kept adiabatic. The 
same physical problem has been considered by Wong and Reizes [19], who 
analyzed by a vector potential method the three-dimensional case where the inner 
square prism is confined by two end walls. 

FIG. 10. Refinement of case (d) of Fig. 9 for -0.08 < $ co.15 and -2.15 < $ < -2.07. 



DISCRETE VECTOR POTENTIAL MODEL 

FIG. 11. Square doubly connected enclosure: tr,-velocity profiles in the mid section at We = I; 
comparison with 1131. 

The numerical results for two different Grashof numbers, namely the streamline 
and temperature contours for Gr = 5000 and Gr = 50,000 are shown in Fig. 1.2. At 
increasing values of the Grashof number it may be noticed that the net circumferen- 
tial flow in the annulus increases as indicated by the value of the stream function 
at the inner boundary; that is, timin = - 1.026 for Gr = 5000 and emin = -2.15 for 
Gr = 50,000. A comparison with the results of the mid-section of the three-dimen- 
sional case [19] shows a very good qualitative agreement with regard to the 
streamlines and the isothermal lines. 

The agreement is not as good for the numerical value of the net circumferential 
flow at the larger Grashof number. In fact, the maximum value of the only compo- 
nent of the vector potential J/z which is different from zero at the mid-section is 
I)~ = 1.114 for Gr = 5000 and ljlz = 4.356 for Gr= 50,000. The numerical dis- 
crepancy is probably due to some three-dimensional effect present in this solution. 
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timi, = -44., A$ = 6. 

timin = -2OO., A$ = 30. 

Tmin = O., AT = .2 

I - \ /-------- 
<lYj g 

T,,,;” = O., AT = .2 

FIG. 12. Natural convection in a doubly connected domain: streamlines and isothermal lines at the 
steady state for Pr= 1, Gr= 5000 (a), (b), and Gr = 50,000 (c). (d). Grid mesh 39 x 39. Boundary 
conditions: B = 1 at the internal walls; fI = 0 at the left vertical external wall; ~zI = 0 at the other external 
walls, 

6. CONCLUDING REMARKS 

The model we discussed in the present paper has several very attractive features 
consisting of 

- a divergence-free velocity field automatically generated through an 
algebraic manipulation of the discretized equations which is exactly equivalent to 
the introduction of a vector potential in the differential equations; 
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- the boundary conditions directly imposed on the discrete values of tk.e 
primitive variables before operating the algebraic manipulation of the equations: 

- a fully implicit numerical procedure applied over a system of reduced 
dimensions after the introduction of the discrete vector potential. 

These positive aspects are in some way counterbalanced by the increased com- 
putational effort required to invert the matrix which has a larger band with respect 
to other more usual implicit schemes. However, for certain particular applications. 
such as transient phenomena or multiply connected flow fields, for which the above 
listed features are very important to reach a satisfactory accuracy, the preser,t 
model may be competitive and a study to improve its efficiency is in progress. 

The accuracy of the method has been tested against an exact sollltion for the 
unsteady fIow due to an array of vertical regions either in simply and in dc~bly 
connected domains. 

Several other applications to three-dimensional or multiply connected recir- 
culating flow fields in enclosures have been discussed together with some ~~rner~ca~ 
results, in comparison with previous studies of the same physical cases by means of 
different numerical methods. 

From a theoretical point of view it is interesting to stress the fact that the discrete 
vector potential we introduced in the model is not solenoidal as in the classical 
approach and its boundary values are fixed without any ambiguity. The uniqueness 
of the solution follows from the automatic numerical implementation of such condi- 
tions. This peculiarity may be further investigated to devise new makemaricai 

els for the vector potential approach. 
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